

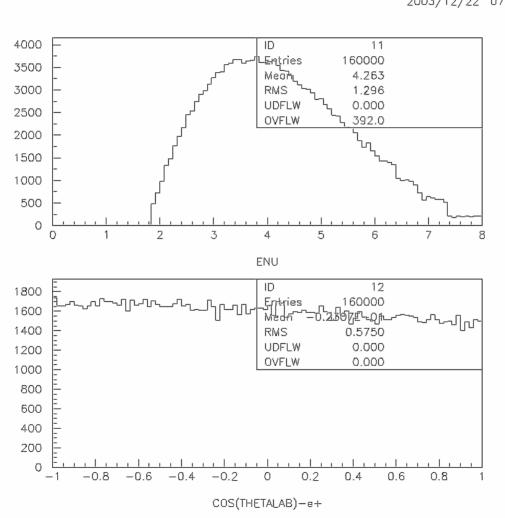
KSU Simulation Work, etc.

- Simulation tools
- Scintillator oil test setups
 - Simple setup to look at attenuation lengths, gain some experience.
 - Have secured 110 gal. of NuTeV oil, small sample of Gd-loaded oil.
 - Two students + technician+Noel Stanton involved.
- Wolf Creek
 - Have resumed contact after WC re-fueling operation (completed 12/9/03).
 - Attempting to negotiated "Excelon-type" type agreement.
 - Awaiting response from WCNOC.

Simulation work--general

- Some progress in gathering tools (or gathering promises to gather tools):
 - − Byron \rightarrow time dependent flux.
 - − Josh \rightarrow PMT simulation from SNO.
 - − Jon \rightarrow Neutron propagation.
- KSU work:
 - Simple Geant4 geometry.
 - Simple neutrino event generator set up.
 - Simple fast simulation.
- Need:
 - A better way to work together.
 - = a "managed" Fermilab host computer.

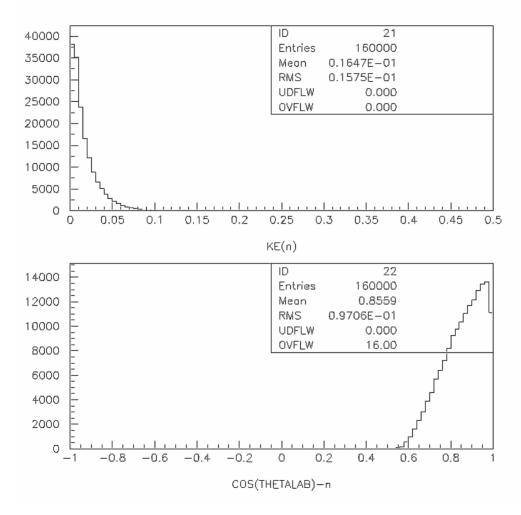
Geant simulation


- Implemented simple geometry (Yu Fu)...
- Works for single particles, e.g. sums electron/positron path lengths
- But lost post-doc who did work!
- Plan: marry geometry with event generator over break (with E. von Toerne).

Event Generator

- Beacom/Vogel cross section with
 - $(\Delta/M)^1$ corrections; $\Delta=M_n-M_p$;
 - Final state neutron kinematics.
 - "Inner" radiative corrections
- Features:
 - Slight negative asymmetry in $\cos\theta_{L}(e^{+})$.
 - KE(e+) → E(n)- Δ -m_e-KE(n).
 - $\theta_{L,max}(n)$ ~55 deg.
 - KE_{max}(n)~100 KeV.
 - Very close to $(\Delta/M)^0$ result except near threshold.
- Flux from Gratta, Vogel RMP.





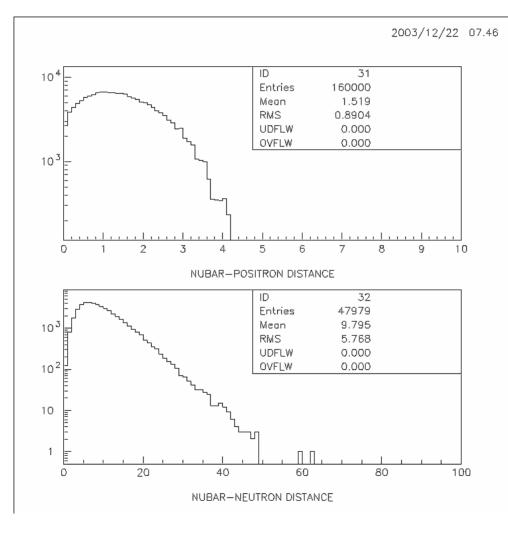
2003/12/22 07.46

12/23/03

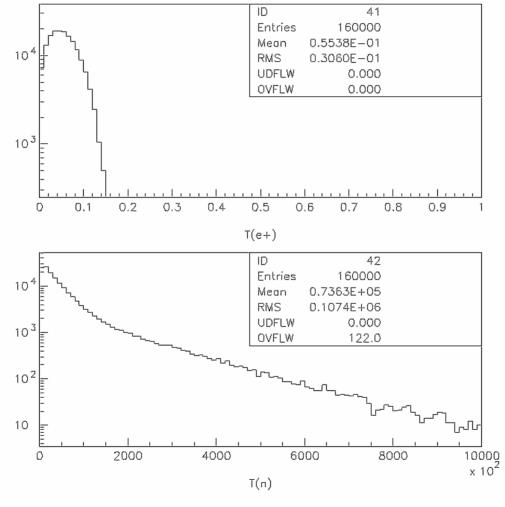
Fast Detector Simulation

- Allows way to check generator.
- Tool for cross-checking Geant.
- Maybe more useful than Geant for "simple" studies.
- Ingredients:
 - Event generator \rightarrow positron, neutron kinematics.
 - Generates gamma ray "secondaries".
 - Positron dE/dx via Bethe-Seltzer formula.
 - n-capture on H, Gd-155, or Gd-157.
 - Propagates secondaries
 - Gammas to first Compton scatter.
 - Neutrons via diffusion(fast) or stepping via cross section(slower).

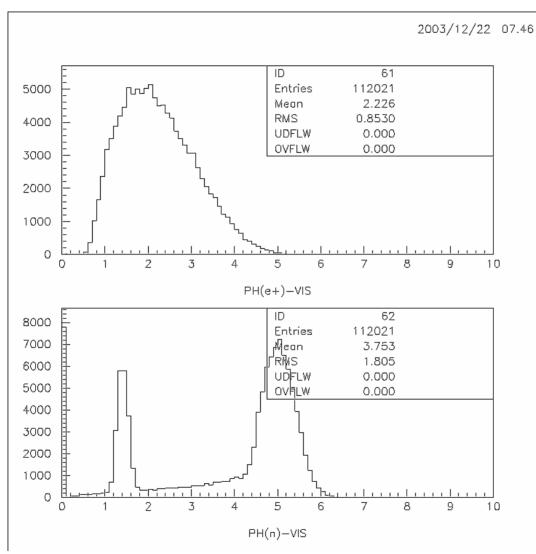
Secondary generation


- Positron dE/dx via Bethe-Seltzer formula (but no MCS).
- e^+e^- annihilation \rightarrow from rest.
 - Does not include time distribution from prompt and delayed (~3 ns) positronium contributions.
- n-capture on H, Gd-155, or Gd-157.
 - Single isotropic gamma from H.
 - "Minor" Gd isotopes ignored.
 - Capture on C ignored.
 - Gd is complicated!
 - Sweep under rug and approximate by Poisson distribution of phase-space generated photons.

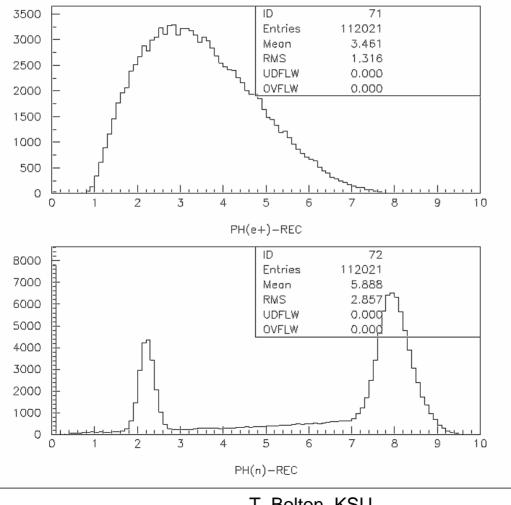
Neutrons


- Fast mode: diffusion with mean free path, mean time taken from Chooz.
 - <r > ~ 6(30) cm in Gd-loaded (unloaded) scintillator.
 - Capture time ~ 30(180) ms in Gd-loaded (unloaded) scintillator.
 - Simple minded at loaded/unloaded boundary: use constants at neutron vertex, then ignore boundary.
 - N propagate too far (not far enough) in transitioning into (out of) Gd-loaded region.
- Some experimentation with stepping mode.
 - Cross sections (ENDF) available from BNL (be mindful of temperature of target!).
 - Geant4 implements these as well.
 - Pretty close to fast mode, discovered bug in fast mode time distribution (should be exponential, not Gaussian).

2003/12/22 07.46


12/23/03

PMT simulation

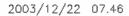

- Include attenuation using Chooz parameters (4m in Gd, 10 m in unloaded).
- 5300 photons/MeV (from Chooz).
- 20% PMT coverage with 8in. tubes.
- 20% QE \rightarrow Typical #photo-electrons ~ 3-5/tube.
- Time, PH, npe, attenuation length saved for each "hit".
- Mimic reconstruction by including photo-statistics and spread in attenuation correction (no real reconstruction).

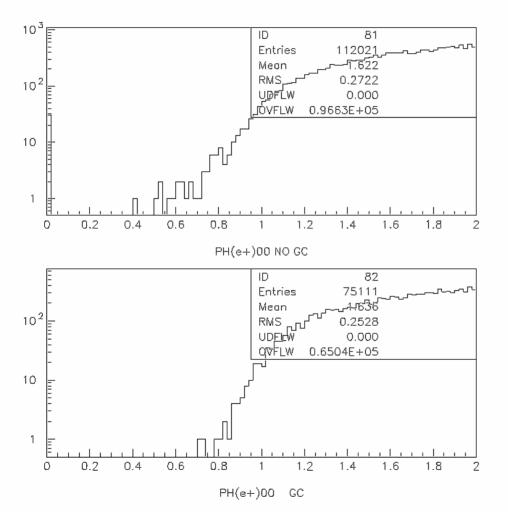
2003/12/22 07.46

Some code details

- In "easy" C++ to use parts in Geant4.
- Calls some Fortran when needed.
- "Constants" class ReactorConstant.hh pretty handy compilation of parameters.
- Interfaces to PAW because I think more people know it.
- Easy to run several "models" at once for comparison.

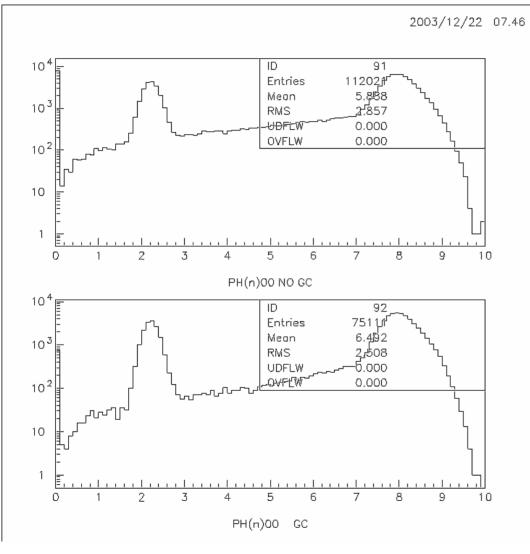

```
11
ReactorDetector DetectorA:
ReactorNtuple ModelA(1,"model A",dirName);
DetectorA.SetParam FastNeutronOption(0);
DetectorA.SetParam R0(200);
DetectorA.SetParam R1(200);
DetectorA.SetParam R2(275);
11
ReactorDetector DetectorB:
DetectorB.SetParam FastNeutronOption(0);
DetectorB.SetParam R0(175);
DetectorB.SetParam R1(200);
DetectorB.SetParam R2(275);
ReactorNtuple ModelB(2,"model B",dirName);
11
// event loop
11
for (int events = 0;events<nevents;events++) {</pre>
 11
 // create neutrino event
 11
  ReactorEvent Event(rmaxgen);
  11
 // create fast detector simulation
  11
  DetectorA.LightsOut(Event);
 ModelA.Fill(Event, DetectorA);
  11
  DetectorB.LightsOut(Event);
 ModelB.Fill(Event,DetectorB);
```


Detector models in ReactorFsim.



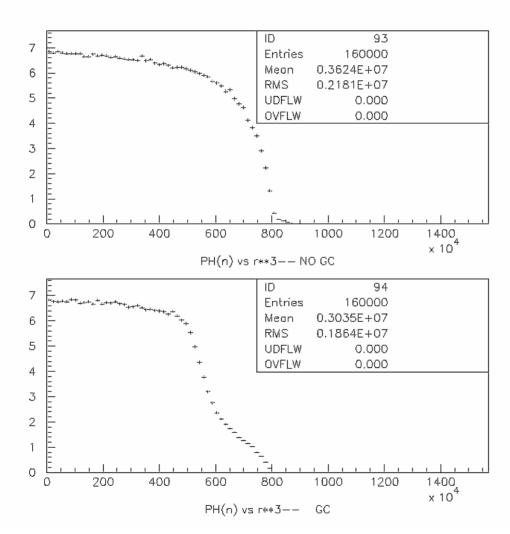
Example: Effect of gamma catcher

- "Model A":
 - R0=200 cm = outer radius of Gd-loaded region.
 - R2=275 cm = outer radius of inactive oil region.
- "Model B":
 - R0=175 cm = outer radius of Gd-loaded region.
 - R1=200 cm = outer radius of active unloaded scintillator region.
 - R2=275 cm = outer radius of inactive oil region.



No gamma catcher → need positron energy cut?

12/23/03



No gamma catcher→ higher acceptance correction for neutron.

2003/12/22 07.46

Gamma catcher sharpens fiducial.

12/23/03