


We make use of the 0.178 ms half-life of ⁹Li to statistically separate from IBD events: ⁹Li decay occur a few halflives after a big event while IBD events occur with a time constant of 33 s after a big event.

Counting IBD events in this way makes the IBD rate insensitive to the ⁹Li rate: changing the ⁹Li by a factor of three does not change the measured IBD rate.

The recoil proton spectrum in the IBD region (1-10 MeV) consists of two contributions: neutrons above 10 MeV and those between 1 and 10 MeV.

The contribution form above 10 MeV is known precisely from the recoil spectrum above 10 MeV. The part from 1-10 MeV may be extrapolated from the inferred neutron spectrum above 10 MeV.

This results in a 30% underestimate for the IBD region, which is known to about 30%.

Background rates in fiducial region (r<2600 mm)

Source	Rate	In situ measurement	•E _{vessel} - total energy deposited in vessel
⁹ Li, E _{vessel} >1 GeV	$24/day^2$	<9%	• K_p - recoil proton
⁹ Li, E _{vessel} <1 GeV	0.06/day	<30%	energy
Recoil protons $0.8 < K_p < 8 \text{ MeV}$ $E_{excess} < 0.1 \text{ MeV}$ $E_{veto} < 10 \text{ keV}$	0.6/day ¹	~30%	 •E_{veto} - total energy in 3 cm Ar:CO₂ filled tagger counters •E_{excess}=E_{vessel}-K_p, energy in vessel in
Above with 99% tagging efficiency	1.6/day	~30%	excess of proton recoil energy

¹Monte Carlo rate scaled up by factor of five from sheet/line study.

²Monte Carlo rate scaled up by factor of two from comparison with toy model