

Reactor Analysis Tool

Stan Seibert
University of Texas

Project Goals

- Create a new Monte Carlo package for Braidwood that would simulate individual particles and photons.
- Reuse as many ideas and as much code from others as possible.
- Break down analysis into small tasks that can be implemented by many people.
- Design for analysis of both Monte Carlo and real data.

Reuse is good!

- ✓ GEANT4 Monte Carlo simulation of detectors and physical processes
- ✓ ROOT Object I/O to disk or over network.
- ✓ GLG4sim Generic Liquid Scintillator GEANT4 simulation, written and maintained by Glenn Horton-Smith from the KamLAND collaboration.
- ✓ SNOMAN SNO Monte Carlo and ANalysis. Provided design inspiration, but no code.

How it all fits together:

The Concept

The Event Data Structure

```
RAT DS
   RAT MC
       RAT MCParticle—RAT MCParticle
       RAT MCTrigger — RAT MCTrigger
       RAT MCPMT—RAT MCPMT—RAT MCPMT
   RAT EV — RAT EV — RAT EV
       RAT PMT — RAT PMT — RAT PMT
       RAT PosFit—RAT PosFit
      RAT EFit — RAT EFit
                                 (Abridged)
```

User Interface

- Command Line
- Macro files to control settings:

```
/glg4debug/glg4param omit_muon_processes 1.0
/glg4debug/glg4param omit hadronic processes 1.0
/rat/proc count
/rat/procset update 5
/rat/proc outroot
/rat/procset "test.root"
/run/initialize
/generator/rates 3 1
/generator/gun gamma 0 0 0 0 0 1.022
/run/beamOn 100
```

Monte Carlo Features

- Generate single and multiparticle events, and interleave events of different types
- Implements spherical, two-zone Braidwood detector with 1200 PMTs and muon veto chambers. Option to turn on chimney.
- Muon veto simulation (Steve Sekula)
- Includes optical, EM, and hadronic processes.
- Simulation of Gd-loaded scintillator, thanks to Double-CHOOZ and Matt Worcester
- Event visualization options provided by GEANT4

Generators

- Single particle "gun"
 - Directed or isotropic
 - Point, fill volume or paint a surface

 Inverse beta decay (with energy and cos(θ) distribution)

 Arbitrary events from HEPEVT format text file

```
99 1 0 0 0 0 0.00558137 0 0 895.62 949.868 1730
1 -11 0 0 0.00260526 0.00276306 0.00189105 0.00
1 2112 0 0 -0.00260526 -0.00276306 0.00369032 0
```

Analysis Tasks

- Reconstruction of position
 - Centroid method
 - q² method
- Reconstruction of energy
 - Maximum likelihood method (see Chris Tunnell's talk)

I/O Options

- Store entire events to ROOT files.
- Reload events from disk back into the event loop.
- Send events through the network between RAT processes.
- Prune unneeded parts to save space.

Visualization

Still some major performance problems, but under investigation...

Infrastructure

Unit testing with CxxTest

http://cxxtest.sourceforge.net/

- Website: http://nu.ph.utexas.edu/bw/trac/
 - User-updatable manuals, howtos, FAQs
 - Browse syntax-highlighed source code
 - Timeline of source code changes with diffs
 - Bug tracking
 - Build testing results for Linux, Solaris, Mac OS X
- Email list: bw_sim@hep.chicago.edu

Website

Braidwood Software: Reactor Analysis Tool (RAT)

RAT is a Monte Carlo and analysis tools for the Braidwood reactor experiment.

Releases

There have been no official releases yet!

Documentation

Manuals

- UserGuide
- ProgrammerGuide

Links to how-to's

- How to setup RAT
- · How to add a processor
- Off-line Analysis with RAT
- Generalized ROOT tutorial by BaBar
- How to view simulations with HEDDED files in Wired

Projects in Progress/To Do:

- Full simulation of front-end electronics, triggering system, and readout for PMTs + ability to try various configurations and alternate systems.
- Selectable two-zone vs. three-zone detector
- Streamline event generator code to make it easier to add new interactions/decays.
- New generators: radioactive decay, v elastic scattering, ...
- More sophisticated detector geometry with supports, ropes, etc.
- Actual software release!