Simulation Strategy

Matthew Worcester
University of Chicago
Braidwood Collaboration Meeting
October 27, 2005

Overall Strategy

- Maintain two detector simulations
 - full Geant4 detector simulation:
 - all that physics not in a fast simulation
 - easy to do complicated geometry
 - new tools, event display
 - merge with existing veto simulation code
 - ReactorFsim "fast" simulation:
 - only physics is what we put in it
 - large-statistics detector studies

What I Did for My Summer Vacation

- Simulation group goal:
 - Have a full Geant4 detector simulation able to reproduce ReactorFsim results by the end of the summer:
 - IBD event kinematics
 - positron energy response
 - two vs. three zone design
 - calibration studies
 - Did we make it?
 - no...

Starting Point

- Glenn Horton-Smith's GenericLAND Geant4 simulation (GLG4sim):
 - based on G4 simulation of KamLAND
 - vertex, position generator for primary particles
 - event mixing, separation can be done at event generator
 - detailed scintillation processes
 - □ detailed PMT model →
- Use as library in Braidwood simulation:
 - implement own detector design, optical model

Braidwood Software

- Reactor Analysis Tools (RAT)
 - adapted from SNO software "processor" design:
 - series of processors to handle events
 - data or MC events handled by same software
 - DAQ, reconstruction, ROOT output separate processors
 - runs GLG4sim as a MC processor
 - could also run ReactorFsim, others
 - also contains the code to overload GLG4sim functions:
 - detector and veto system design, materials
 - ROOT tree output

Pieces of the MC Puzzle

- Huge initial effort by Texas:
 - entire RAT framework, documentation
 - BW detector-specific code
 - RAT database, logging, signal handling, etc...
- Veto simulation code added by MIT:
 - can be implemented by switch
- IBD event generator added by Chicago
- Reconstruction code starting from work done by KSU for ReactorFsim
- Gadolinium added recently:
 - n+Gd cross-sections needed in G4NDL
 - radiative model of n+Gd capture gammas

Inverse Beta Decay Generator

- No default IBD event generator in GLG4sim:
 - load IBD vertex e+ and n into GLG4sim via HEPEVT format interface
 - create standalone code to provide ascii file with e+ and n information (kept in gen directory of RAT)
 - copied from ReactorFsim IBD event generator

Detector and Secondaries

- BW detector two zone design defined in settings_spherical.dat:
 - GdLoadedScint < 2600mm
 - _acrylic < 2700mm
 - PMT radius = 3400mm
 - mineralOil < 3500mm</p>
 - StainlessSteel < 3600mm
- G4 tracked particles follow physics defined in GLG4PhysicsList.cc:
 - e+: multiple scattering, ionization, Bremsstrahlung and annihilation
 - n: elastic and inelastic scattering and radiative capture
 - gamma: conversion, Compton scattering, photoelectric effect

Radiative Neutron Capture on Gd

- n+Gd cross-section tables from ENDF/B-VI
 - final state information actually ⁴⁹In
 - kept in data/neutron
- radiative decay model received gratis from 2xCHOOZ:
 - top 2 ¹⁵⁵Gd cascades
 - top 3 ¹⁵⁷Gd cascades
 - otherwise continuum
 - kept in GdHPCapture

Current Status

- First IBD events generated with n capture on Gd:
 - no event mixing at generation
 - all energy (e+ and n) included for each event
- Positron energy response studies started
- 2 vs. 3 zone design studies:
 - needs work on the BW detector construction code
 - more information in tree
- Just starting to shake down a huge piece of software

Further G4 Work

- Calibration studies:
 - allow calibration constants in reconstruction to vary from those used in MC
 - started with attenuation in ReactorFsim
- Sources:
 - study detector response to ²⁵²Cf and other gamma and correlated neutron sources
 - extensive source models in MCNP, ²⁵²Cf in ReactorFsim
- Fast mode:
 - design a "fast" mode for RAT:
 - remove unnecessary physics processes in GLG4sim?
 - parameterize optical photon tracking in Geant4?
- More hands working on e+ and n energy response:
 - most groups just starting to learn
- …?

Fast Simulation

- ReactorFsim will be maintained as a fast detector simulation:
 - Geant4 is slow (~1 Hz on desktop)
 - primarily for large-statistic simple-event (IBD, fast neutron) studies

Issues:

- much physics added for NuSAG, may not be needed now
- memory leaks and unnecessary time sinks can be removed
- still a few "features" to be "improved"
- Good project for a small group